Exercise 22

What restrictions must be made on the scalar b so that the vector $2 \mathbf{i}+b \mathbf{j}$ is orthogonal to (a) $-3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and (b) \mathbf{k} ?

Solution

For two vectors to be orthogonal with one another, their dot product must be zero.

Part (a)

$$
\begin{aligned}
(2 \mathbf{i}+b \mathbf{j}) \cdot(-3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}) & =0 \\
(2)(-3)+(b)(2)+(0)(1) & =0 \\
2 b-6 & =0 \\
b & =3
\end{aligned}
$$

Part (b)

$$
\begin{aligned}
(2 \mathbf{i}+b \mathbf{j}) \cdot(\mathbf{k}) & =0 \\
(2)(0)+(b)(0)+(0)(1) & =0 \\
0 & =0
\end{aligned}
$$

No restrictions on b are necessary for the vectors to be orthogonal.

